System Design and Methodology/ Embedded Systems Design (Modeling and Design of Embedded Systems) TDTS07/TDD108

VT 2024

Soheil Samii

Institutionen för datavetenskap (IDA) Linköpings universitet

> email: <u>soheil.samii@liu.se</u> B building, 329:220

Course Information

Web page: http://www.ida.liu.se/~TDTS07 http://www.ida.liu.se/~TDDI08

Examination: written, March 20, 14:00-18:00 labs (see course page and lesson notes)

Lecture notes: made available on the web page

Starting this semester, we are using Digital Exams in WISEflow:

- See instructions linked from our course web page (in the Examination section)
- Some preparation is needed ahead of the exam (downloading WISEflow, secure browser FLOWlock, test a demo flow, verify connection to Eduroam network)
- Bring your own laptop or book guest computer when registering for the exam

Course Information

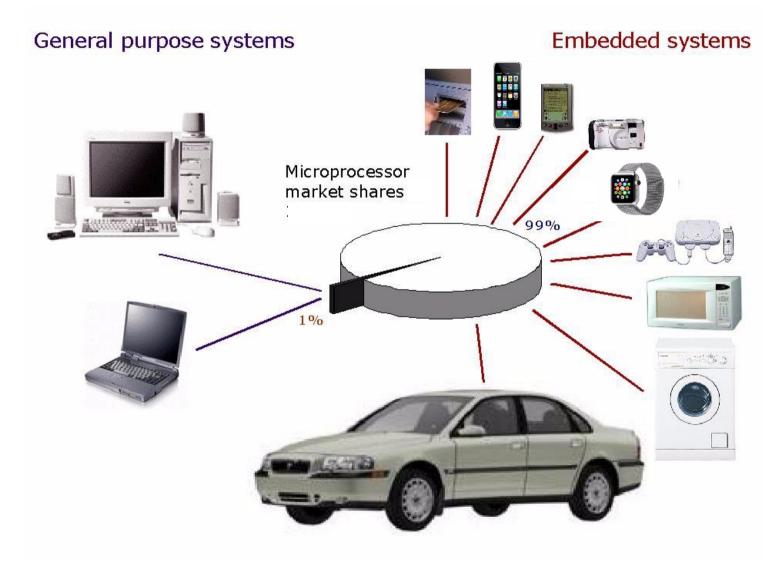
Recommended literature:

Peter Marwedel: "*Embedded System Design*", Springer, 2nd edition 2011, 3d edition 2018, 4th edition 2021.

The 4th edition is open access and available online via Springer.com

Edward Lee, Sanjit Seshia:"Introduction to Embedded Systems - A Cyber-Physical Systems Approach", 1st edition 2011, 2nd edition 2017 ' (available online: LeeSeshia.org)

Course Information


Lessons&Labs:

Yungang Pan Institutionen för datavetenskap (IDA) email: <u>yungang.pan@liu.se</u> B building, 329:202

EMBEDDED SYSTEMS AND THEIR DESIGN

- 1. What is an Embedded System
- 2. Characteristics of Embedded Applications
- 3. The Traditional Design Flow
- 4. An Example
- 5. A New Design Flow
- 6. The System Level
- 7. Course Topics

That's how we use microprocessors

What is an Embedded System?

There are several definitions around!

• Some highlight what it is (not) used for:

"An embedded system is any sort of device which includes a programmable component but itself is not intended to be a general purpose computer."

What is an Embedded System?

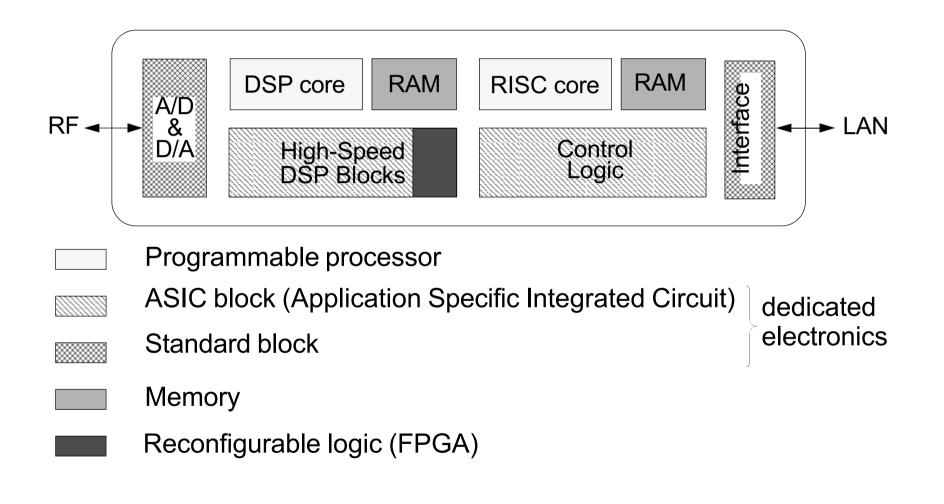
There are several definitions around!

• Some highlight what it is (not) used for:

"An embedded system is any sort of device which includes a programmable component but itself is not intended to be a general purpose computer."

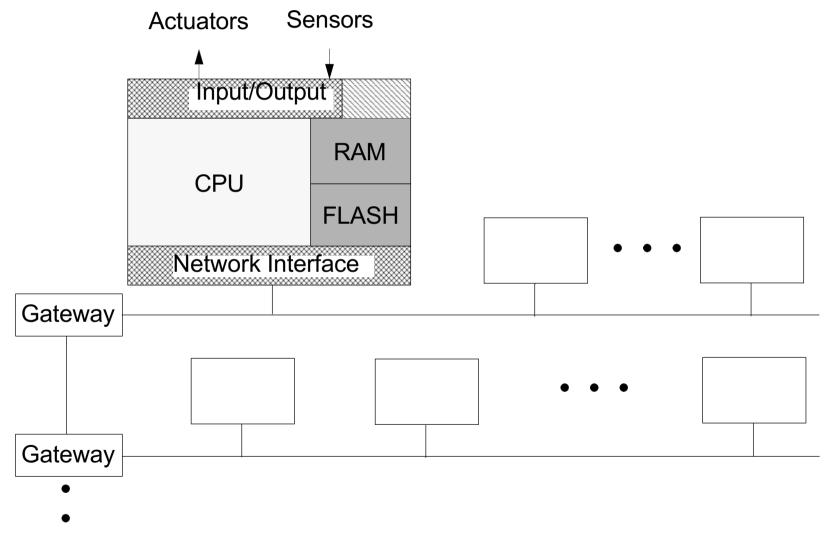
Some focus on what it is built from:

"An embedded system is a collection of programmable parts surrounded by ASICs and other standard components, that interact continuously with an environment through sensors and actuators."


What is an Embedded System?

Some of the main characteristics:

- Dedicated (not general purpose)
- **Contains a programmable component**
- □ Interacts (continuously) with the environment


Two Typical Implementation Architectures

Telecommunication System on Chip

Two Typical Implementation Architectures

Distributed Embedded System (automotive application)

•

The Software Component

Software running on the programmable processors:

- **Application tasks**
- Real-Time Operating System
- □ I/O drivers, Network protocols, Middleware

Characteristics of Embedded Applications

What makes them special?

 Like with "ordinary" applications, functionality and user interfaces are often very complex.

But, in addition to this:

- Time constraints
- **Power constraints**
- **Cost constraints**
- □ Safety
- **Time to market**

Time constraints

- Embedded systems have to perform in real-time: if data is not ready by a certain deadline, the system fails to perform correctly.
 - □ *Hard deadline*: failure to meet leads to major hazards.
 - □ Soft deadline: failure to meet is tolerated but affects quality of service.

Power constraints

• There are several reasons why low power/energy consumption is required:

□ Cost aspects:

High energy consumption ⇒ large electricity bill expensive power supply expensive cooling system

□ Reliability

High power consumption \Rightarrow high temperature that affects life time

Battery life

High energy consumption \Rightarrow short battery life time

Environmental impact

Cost constraints

- Embedded systems are very often mass products in highly competitive markets and have to be shipped at a low cost.
 - What we are interested in:
 - □ Manufacturing cost
 - **Design cost**
 - □ Material cost (Bill of Material)
 - □ Warranty cost

Safety

- Embedded systems are often used in life critical applications: avionics, automotive electronics, nuclear plants, medical applications, military applications, etc.
 - Reliability and safety are major requirements.
 In order to guarantee safety during design:
 - <u>Formal verification</u>: mathematics-based methods to verify certain properties of the designed system.
 - <u>Automatic synthesis</u>:certain design steps are automatically performed by design tools.

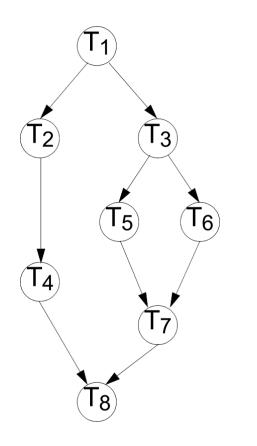
Short time to market

- In highly competitive markets it is critical to catch the market window: a short delay with the product on the market can have catastrophic financial consequences (even if the quality of the product is excellent).
 - **Design time has to be reduced!**
 - Good design methodologies.
 - Efficient design tools.
 - Reuse of previously designed and verified (hardw&softw) blocks.
 - Good designers who understand both software and hardware!

Why is Design of Embedded Systems Difficult?

- High Complexity
- □ Strong time&power constraints
- □ Low cost
- □ Short time to market
- Safety critical systems

In order to achieve these requirements, systems have to be highly optimized.


Why is Design of Embedded Systems Difficult?

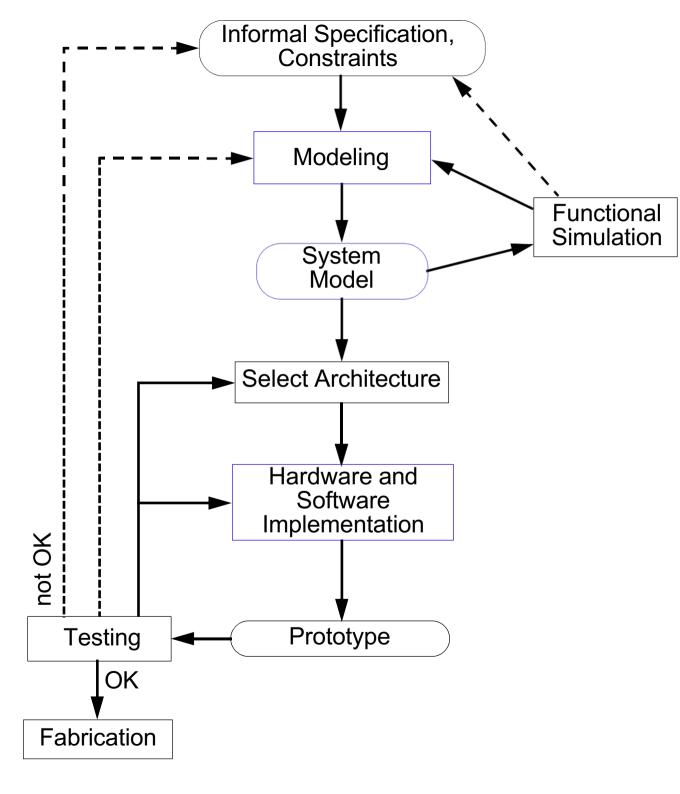
- High Complexity
- □ Strong time&power constraints
- □ Low cost
- □ Short time to market
- Safety critical systems

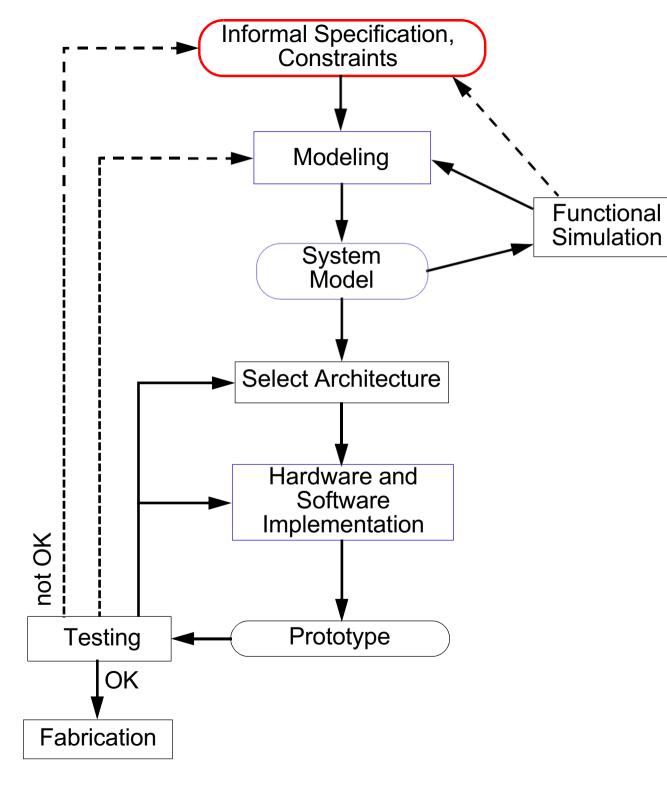
In order to achieve these requirements, systems have to be highly optimized.

Both hardware and software aspects have to be considered simultaneously!

An Example

The system to be implemented is modelled as a *task graph*:

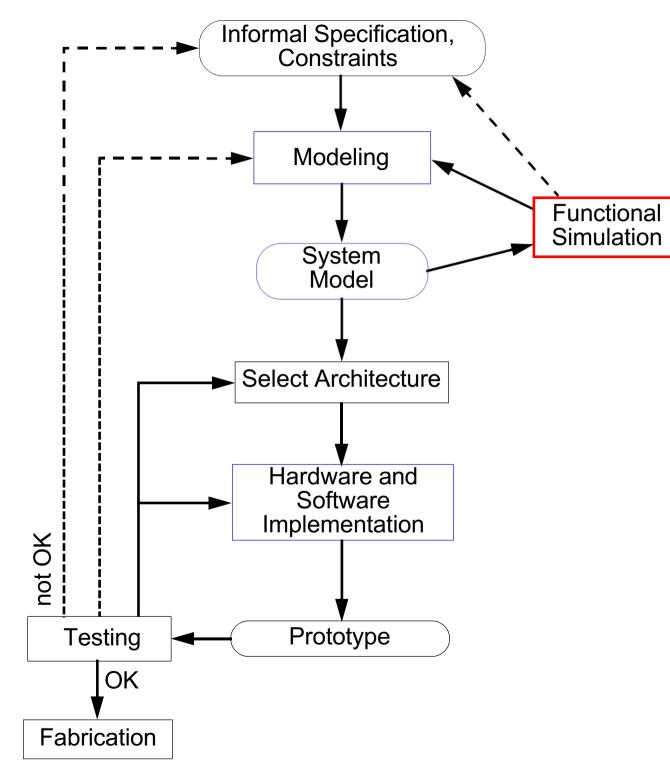

- a node represents a *task* (a unit of functionality activated as response to a certain input and which generates a certain output).
- an edge represents a precedence constraint and data dependency between two tasks.

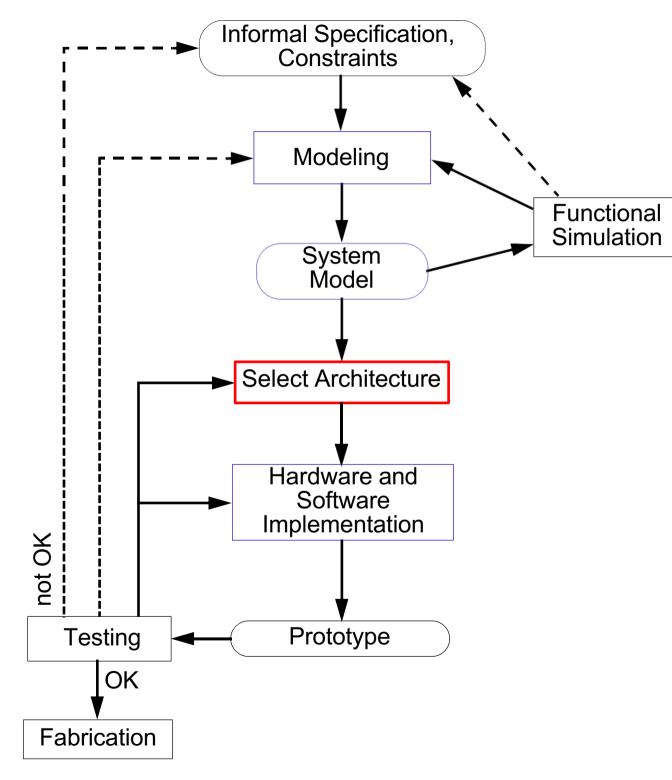

Period: 42 time units

□ The task graph is activated every 42 time units \Rightarrow an activation has to terminate in time less than 42.

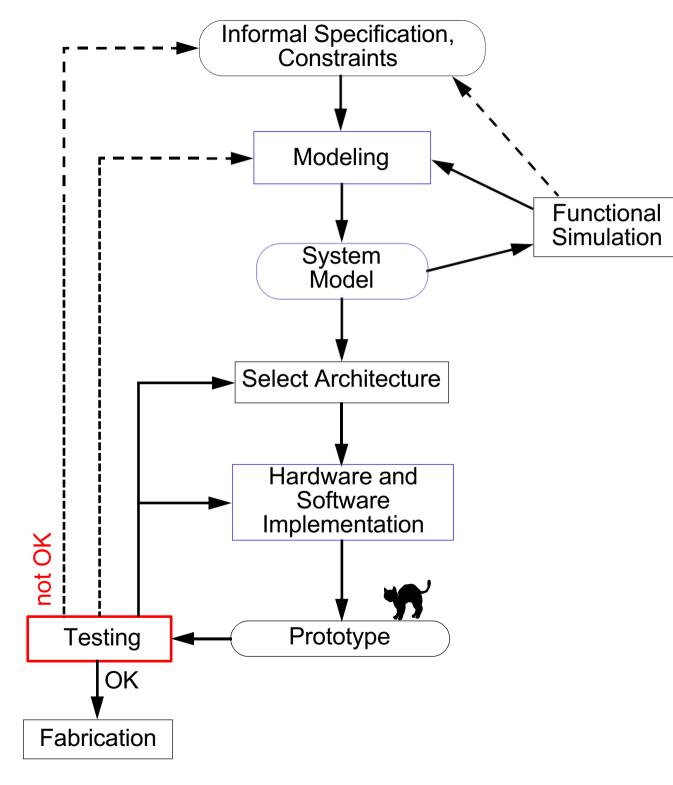
Cost limit: 8

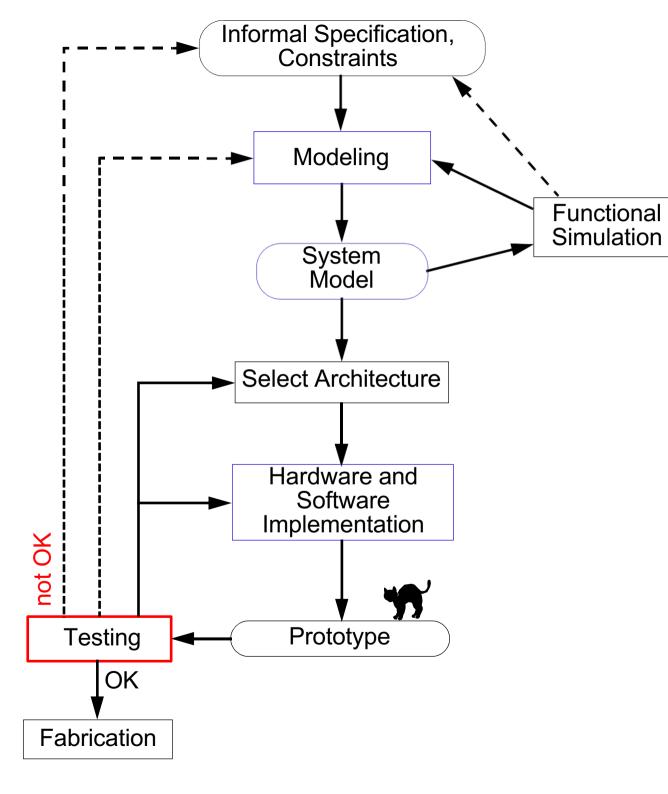
 The total cost of the implemented system has to be less than 8.



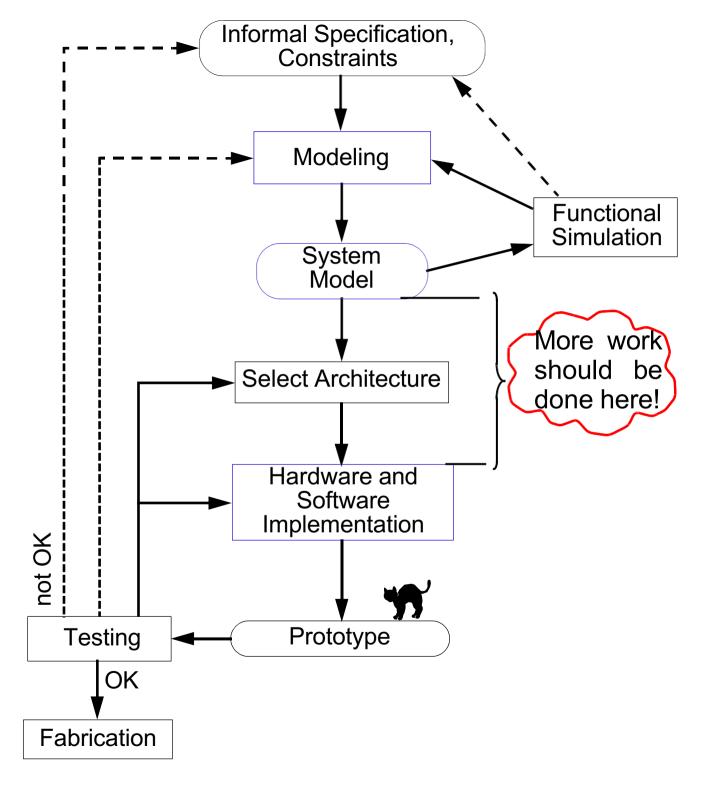

1. Start from some informal specification of functionality and a set of constraints


- 1. Start from some informal specification of functionality and a set of constraints
- 2. Generate a more formal model of the functionality, based on some modeling concept. Such model is our task graph


- 1. Start from some informal specification of functionality and a set of constraints
- 2. Generate a more formal model of the functionality, based on some modeling concept. Such model is our task graph
- 3. Simulate the model in order to check the functionality. If needed make adjustments.


- 1. Start from some informal specification of functionality and a set of constraints
- 2. Generate a more formal model of the functionality, based on some modeling concept. Such model is our task graph
- 3. Simulate the model in order to check the functionality. If needed make adjustments.
- 4. Choose an architecture (μprocessor, buses, etc.) such that cost limits are satisfied and, you hope, time and power constraints are fulfilled.

- 1. Start from some informal specification of functionality and a set of constraints
- 2. Generate a more formal model of the functionality, based on some modeling concept. Such model is our task graph
- 3. Simulate the model in order to check the functionality. If needed make adjustments.
- 4. Choose an architecture (μprocessor, buses, etc.) such that cost limits are satisfied and, you hope, time and power constraints are fulfilled.
- 5. Build a prototype and implement the system.


- 1. Start from some informal specification of functionality and a set of constraints
- 2. Generate a more formal model of the functionality, based on some modeling concept. Such model is our task graph
- 3. Simulate the model in order to check the functionality. If needed make adjustments.
- 4. Choose an architecture (μprocessor, buses, etc.) such that cost limits are satisfied and, you hope, time and power constraints are fulfilled.
- 5. Build a prototype and implement the system.
- 6. Verify the system: neither time nor power constraints are satisfied!!!

Now you are in great trouble: you have spent a lot of time and money and nothing works!

- Go back to 4, choose a new architecture and start a new implementation.
- Or negotiate with the customer on the constraints.

- The consequences:
 - **Delays in the design process**
 - Increased design cost
 - Delays in time to market \Rightarrow missed market window
 - □ High cost of failed prototypes
 - **Bad design decisions taken under time pressure**
 - Low quality, high cost products

1

T₃)

 T_7

5

8

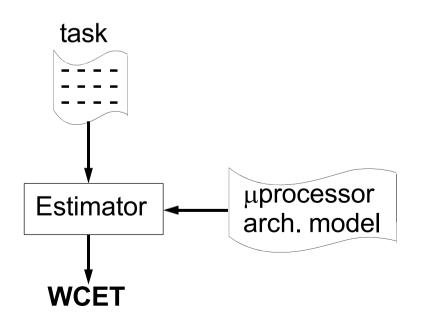
16)

- We have the system model (task graph) which has been validated by simulation.
- We decide on a certain μprocessor μp1, with cost 6.
- For each task the worst case execution time (WCET) when run on μp1 is estimated.

1

15

8


4

Γ3)

 T_7

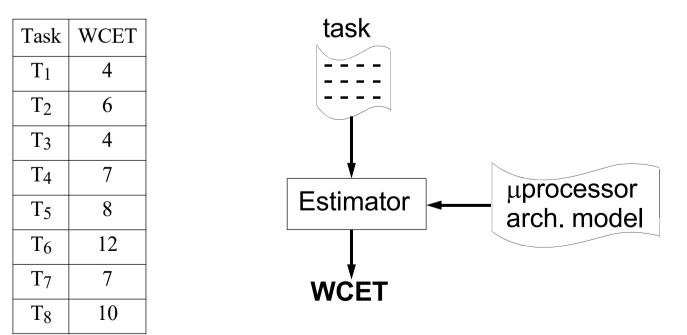
16)

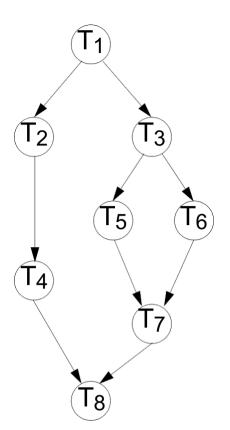
- We have the system model (task graph) which has been validated by simulation.
- **We decide on a certain** μ**processor** μ**p1, with cost 6.**
- For each task the worst case execution time (WCET) when run on μp1 is estimated.

1

15

T8

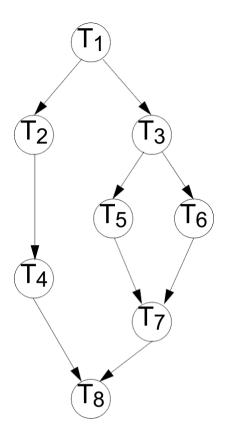

14


T₃)

 T_7

 T_{6}

- We have the system model (task graph) which has been validated by simulation.
- **We decide on a certain** μ**processor** μ**p1, with cost 6.**
- For each task the worst case execution time (WCET) when run on μp1 is estimated.



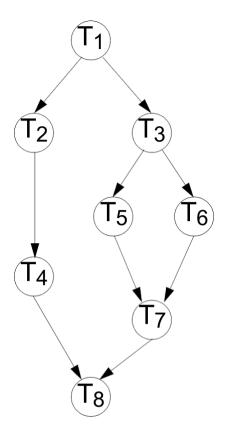
We generate a schedule:

Time	0 2	4 6 8	10 12 14 16	18 20	22 24 26 28	30 32 34 36 38 40	42 44 46 4	8 50 52 54 56 58	60 62 64
	T ₁	T ₂	T ₄	T3	T5	T ₆	T ₇	T ₈	

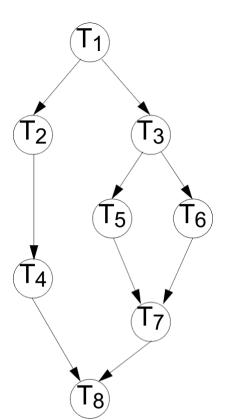
Task	WCET
T ₁	4
T ₂	6
T ₃	4
T4	7
T5	8
T ₆	12
T ₇	7
T ₈	10

We generate a schedule:

 Time
 0
 2
 4
 6
 8
 10
 12
 14
 16
 18
 20
 22
 24
 26
 28
 30
 32
 34
 36
 38
 40
 42
 44
 46
 48
 50
 52
 54
 56
 58
 60
 62
 64


 T1
 T2
 T4
 T3
 T5
 T6
 T7
 T8

Using the architecture with μ processor μ p1 we got a solution with:


- □ Cost: 6 < 8

We have to try with another architecture!

Task	WCET
T1	4
T ₂	6
T3	4
T4	7
T5	8
T ₆	12
T7	7
T ₈	10

We look after a $\mu \text{processor}$ which is fast enough: μp2

Task WCET T_1 2 3 T_2 2 T3 T4 3 T5 4 T_6 6 T_7 3 5 T_8

Example

We look after a $\mu\text{processor}$ which is fast enough: μp2

For each task the WCET, when run on μ p2, is estimated.

We look after a $\mu\text{processor}$ which is fast enough: μp2

For each task the WCET, when run on μ p2, is estimated.

Using the architecture with μ processor μ p2, after generating a schedule, we got a solution with:

□ Execution time: 28 < 42

WCET Task T_1 2 3 T_2 Т٦ 2 3 T₄ T5 4 T₆ 6 T_7 3 5 T_8

18

1

15

[3]

Г7`

 T_6

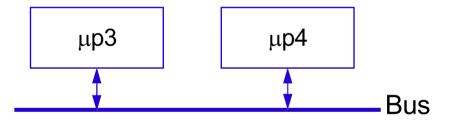
We have to try with another architecture!

1

 T_5

T8

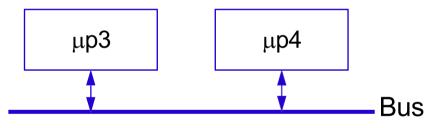
14


Гз

 Γ_7

 $\widehat{\mathsf{T}_6}$

We have to look for a multiprocessor solution


In order to meet cost constraints try 2 cheap (and slow) μps:
 μp3: cost 3
 μp4: cost 2
 interconnection bus: cost 1

We have to look for a multiprocessor solution

In order to meet cost constraints try 2 cheap (and slow) μps: μp3: cost 3 μp4: cost 2 interconnection bus: cost 1

For each task the WCET, when run on μ p3 and μ p4, is estimated.

Task	WCET				
1 ask	μр3	μp4			
T ₁	5	6			
T ₂	7	9			
T3	5	6			
T4	8	10			
T5	10	11			
T ₆	17	21			
T ₇	10	14			
T8	15	19			

ြဒ

7

15

| 4

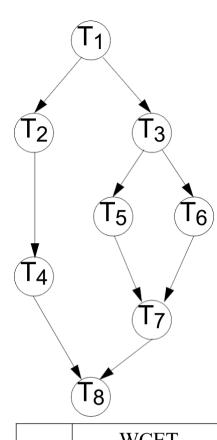
 T_6

41 of 63

 T_2 T_3 T_5 T_6 T_7 T_7 T_8

1

Task	WCET		
1 ask	μр3	μp4	
T ₁	5	6	
T ₂	7	9	
T3	5	6	
T4	8	10	
T5	10	11	
T ₆	17	21	
T ₇	10	14	
T ₈	15	19	

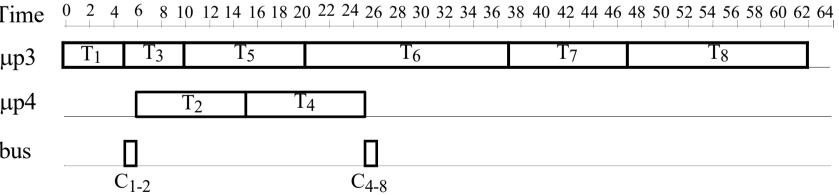

Now we have to map the tasks to processors: μ p3: T₁, T₃, T₅, T₆, T₇, T₈. μ p4: T₂, T₄.

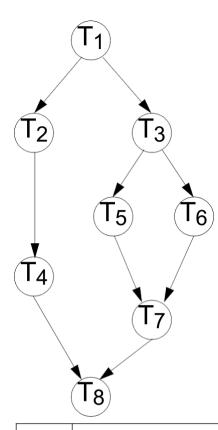
If communicating tasks are mapped to different processors, they have to communicate over the bus.

Communication time has to be estimated; it depends on the amount of bits transferred between the tasks and on the speed of the bus.

Estimated communication times:

- C₁₋₂: 1
- C₄₋₈: 1

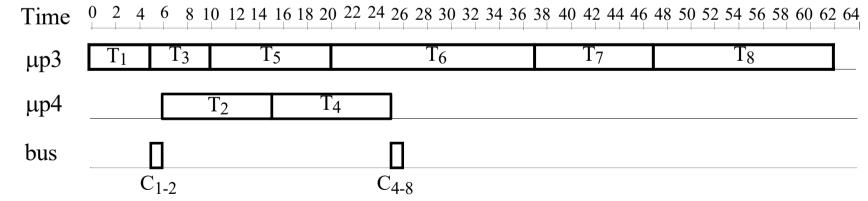



μ**p3: T₁, T₃, T₅, T₆, T₇, T₈.** μ**p4: T₂, T₄.**

Estimated communication times: C₁₋₂: 1 C₄₋₈: 1

We generate a schedule:

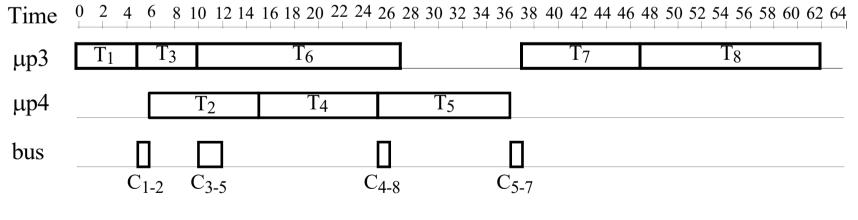
Task	WC	CE I	Time	0 2 4 6
1 ask	μp3	μp4	1 1110	
T ₁	5	6	μp3	T ₁
T ₂	7	9	μp4	[
T3	5	6	bus	п
T4	8	10		L
T5	10	11		_
T ₆	17	21		
T ₇	10	14		
T ₈	15	19		



μ**p3: T₁, T₃, T₅, T₆, T₇, T₈.** μ**p4: T₂, T₄.**

Estimated communication times: C₁₋₂: 1 C₄₋₈: 1

We generate a schedule:



We have exceeded the allowed execution time (42)!

Taalr	WCET		
Task	μp3	μp4	
T ₁	5	6	
T ₂	7	9	
T3	5	6	
T4	8	10	
T5	10	11	
T ₆	17	21	
T ₇	10	14	
T8	15	19	

Try a new mapping; T₅ to μ p4, in order to increase parallelism. Two new communications are introduced, with estimated times: C₃₋₅: 2 C₅₋₇: 1

We generate a schedule:

The execution time is still 62, as before!

Taalr	WCET			
Task -	μр3	μp4		
T ₁	5	6		
T ₂	7	9		
T3	5	6		
T4	8	10		
T5	10	11		
T ₆	17	21		
T ₇	10	14		
T ₈	15	19		

1

15

18

Ι Δ

ြဒ

 T_6

Try a new mapping; T_5 to μ p4, in order to increase parallelism. Two new communications are introduced, with estimated times: C₃₋₅: 2 C₅₋₇: 1

There exists a better schedule!

11

 T_5

T₈

μр3

5

7

5

8

10

17

10

15

Τ4

Task

 T_1

 T_2

T3

T₄

T₅

T₆

 T_7

 T_8

T₃

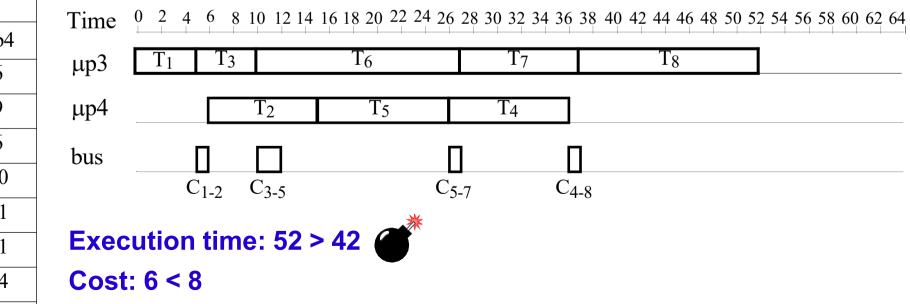
 T_7

WCET

11

21

14


19

 $\widehat{\mathsf{T}_6}$

21	Time	0 2 4 6 8 10 12 14	16 18 20 22 24 2	26 28 30 32 34 36 38	8 40 42 44 46 48 50 52	54 56 58 60 62 64
μp4 6	μp3	T ₁ T ₃	T ₆	T ₇	T ₈	
9	μp4	T ₂	T5	Τ4		
6	bus			п п		
10		C ₁₋₂ C ₃₋₅	(C_{5-7} C_{4-8}		

Try a new mapping; T₅ to μ p4, in order to increase parallelism. Two new communications are introduced, with estimated times: C₃₋₅: 2 C₅₋₇: 1

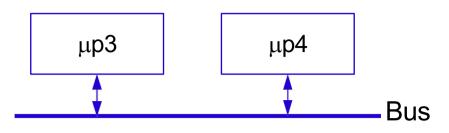
There exists a better schedule!

WCET Task μр3 μp4 T_1 5 6 T_2 7 9 T3 5 6 T4 8 10 T5 10 11 T₆ 17 21 T_7 10 14 **T**8 15 19

1

 T_5

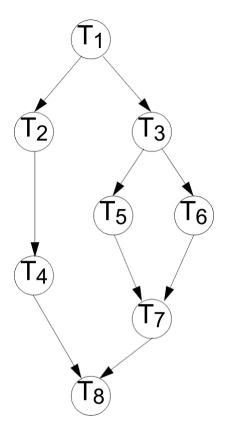
T8


4

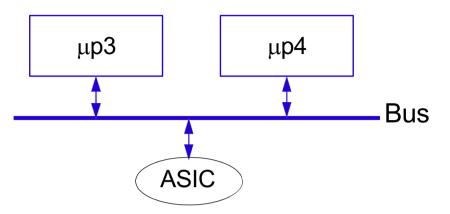
Гз

 T_7

 T_6



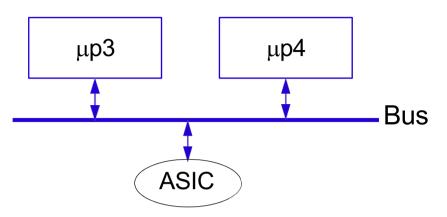
Possible solutions:


 \square Change $\mu \text{proc.}\ \mu \text{p3}$ with faster one \Rightarrow cost limits exceeded

Task	WCET		
Task	μр3	μp4	
T ₁	5	6	
T ₂	7	9	
T3	5	6	
T4	8	10	
T5	10	11	
T ₆	17	21	
T ₇	10	14	
T ₈	15	19	

48 of 63

Examp	le



Possible solutions:

 \square Change $\mu \text{proc.}\ \mu \text{p3}$ with faster one \Rightarrow cost limits exceed

Implement part of the functionality in hardware as an ASIC
 Cost of ASIC: 1

Task	WCET			
Task	μр3	μp4		
T ₁	5	6		
T ₂	7	9		
T3	5	6		
T4	8	10		
T5	10	11		
T ₆	17	21		
T ₇	10	14		
T ₈	15	19		

□ Change µproc. µp3 with faster one \Rightarrow cost limits exceed □ Implement part of the functionality in hardware as an ASIC

New architecture

Cost of ASIC: 1

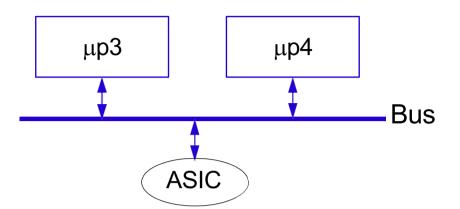
Mapping
 μp3: T₁, T₃, T₆, T₇.

μ**p4: T₂, T₄, T₅.**

- ASIC: T₈ with estimated WCET= 3
 - New communication, with estimated time:
 C₇₋₈: 1

(T 8		
Task	WCET		
1 ask	μр3	μp4	
T ₁	5	6	
T ₂	7	9	
T3	5	6	
T ₄	8	10	
T5	10	11	
T ₆	17	21	
T ₇	10	14	
T8	15	19	

1


15

4

3

Γ₇`

 T_6

- Mapping
 μp3: T₁, T
- 18 WCET Task μр3 μp4 T_1 5 6 ----- T_2 7 9 T3 5 6 T₄ 8 10 T5 10 11 T₆ 17 21 T_7 10 14 T_8 15 19

1

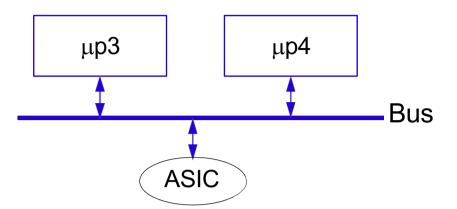
Τ5

14

Гз

Γ7

 T_6


- μp3: T₁, T₃, T₆, T₇. μp4: T₂, T₄, T₅. ASIC: T₈ with estimated WCET= 3
 - New communication, with estimated time: C₇₋₈: 1

Гime	0 2 4	6 8	3 10 12 14	4 16 18 20 22	24 26 28 30	32 34 36 38	40 42 4	4 46 48 50	0 52 54 56	58 60 62 64
μрЗ	T ₁	T3		T ₆		T ₇				
µp4			T ₂	T5]]	4				
ASIC							T ₈			
bus						Ш				
	(C ₁₋₂	C ₃₋₅		C ₅₋₇	C ₄₋₈ C	7-8			51 of 63

T₃

 $\widehat{\mathsf{T}_6}$

Example

Using this architecture we got a solution with:

□ Execution time: 41 < 42

□ Cost: 7 < 8

Task	WC	CET
TASK	μp3	μp4
T ₁	5	6
T ₂	7	9
T3	5	6
T4	8	10
T5	10	11
T ₆	17	21
T ₇	10	14
T ₈	15	19

1

T5

8

ſ₇`

14

Time		6 8 1	0 12 14	16 18 20 2	22 24 26	5 28 30 3	2 34 36	5 38 40	42 44	464	8 50	52 54	56 58	8 60	62 64
μрЗ	T ₁	T3		T6	T	7									
μp4			T ₂	T5		T4									
ASIC								T8							
bus					[]	[П							
	(C_{1-2} (C ₃₋₅		C ₄	5-7	C_{4-8}	C_{7-8}					5	52 of 6	53

What did we achieve?

- **We have selected an architecture.**
- □ We have mapped tasks to the processors and ASIC.
- □ We have elaborated a a schedule.

What did we achieve?

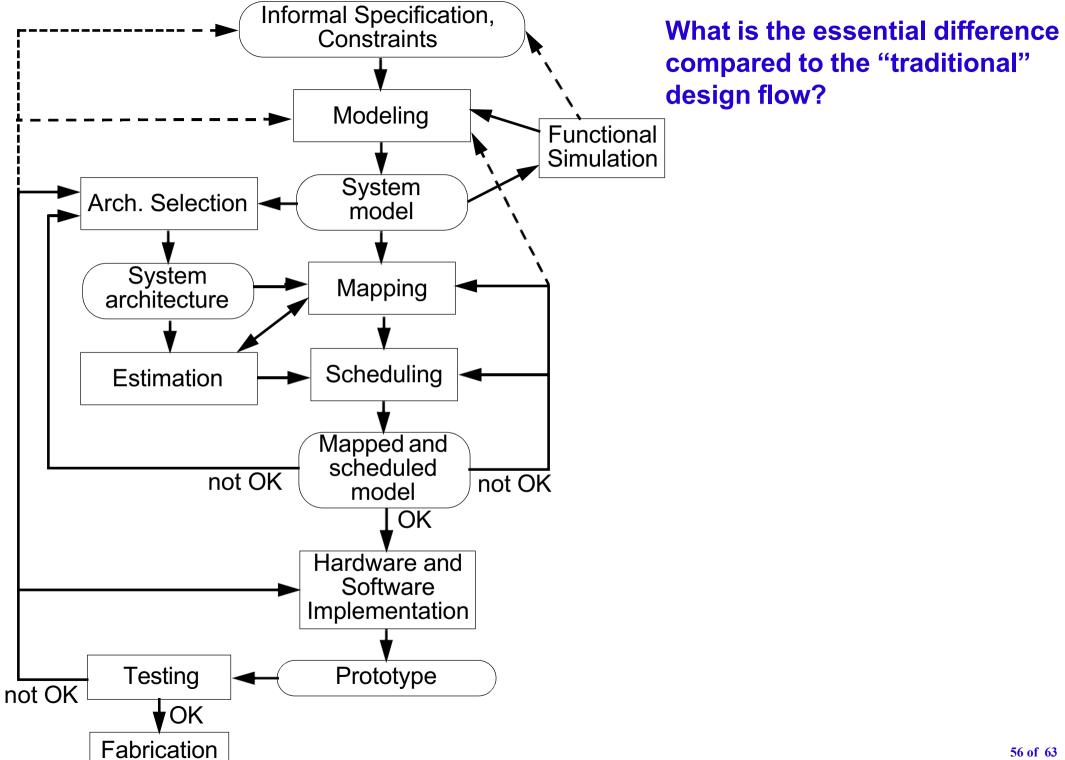
- □ We have selected an architecture.
- □ We have mapped tasks to the processors and ASIC.
- □ We have elaborated a a schedule.

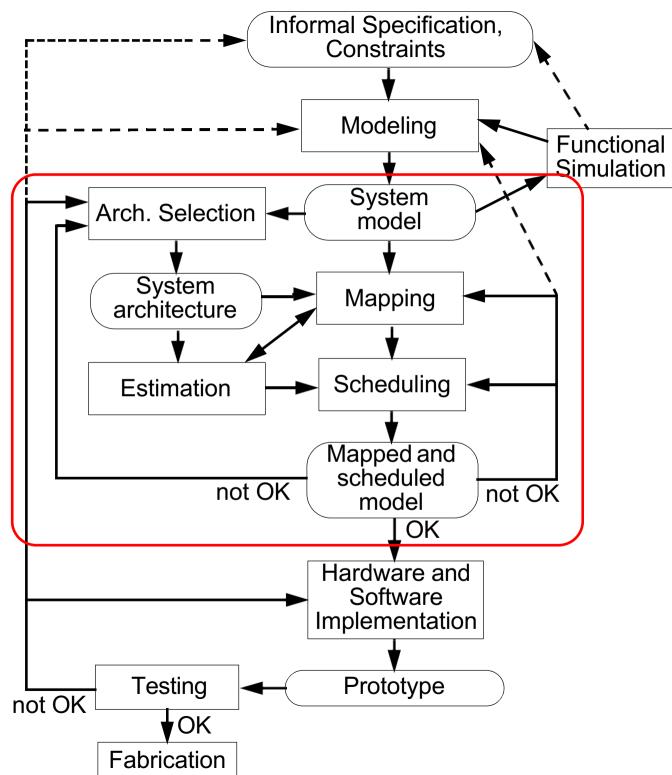
Extremely important!!!

Nothing has been built yet.

All decisions are based on simulation and estimation.

What did we achieve?


- □ We have selected an architecture.
- □ We have mapped tasks to the processors and ASIC.
- □ We have elaborated a a schedule.


Extremely important!!!

Nothing has been built yet.

All decisions are based on simulation and estimation.

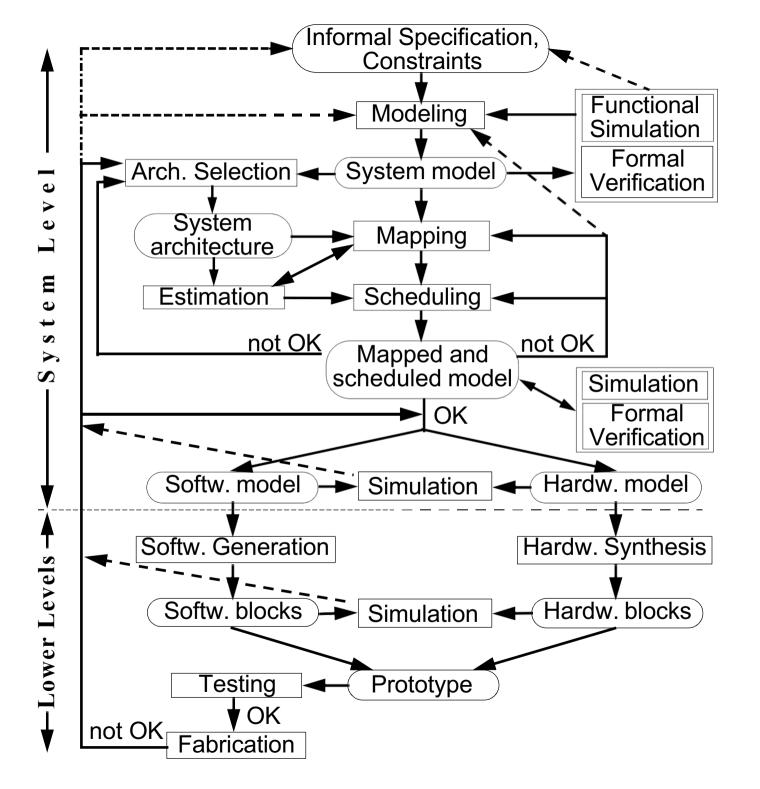
Now we can go and do the software and hardware implementation, with a high degree of confidence that we get a correct prototype.

What is the essential difference compared to the "traditional" design flow?

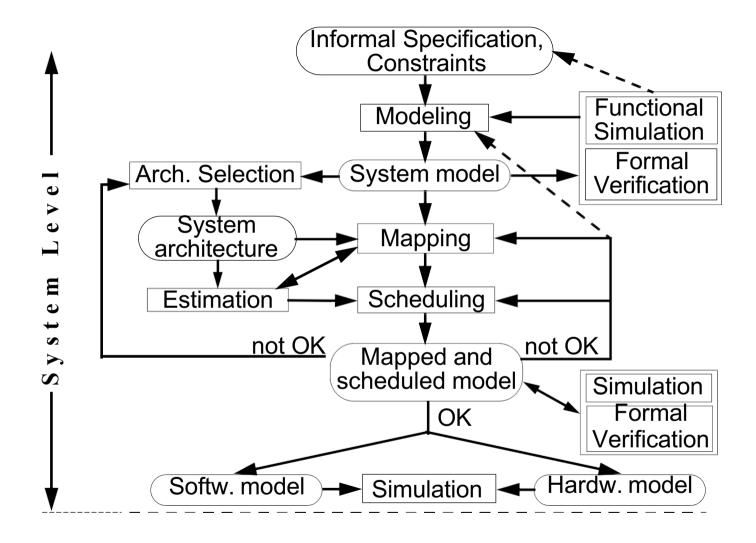
 The inner loop which is performed before the hardware/ software implementation.

This loop is performed several times as part of the <u>design</u> <u>space exploration</u>. Different architectures, mappings and schedules are explored, <u>be-</u> fore the actual implementation and prototyping.

 We get highly optimized good quality solutions in short time.
 We have a good chance that the outer loop, including prototyping, is not repeated.


The Design Flow

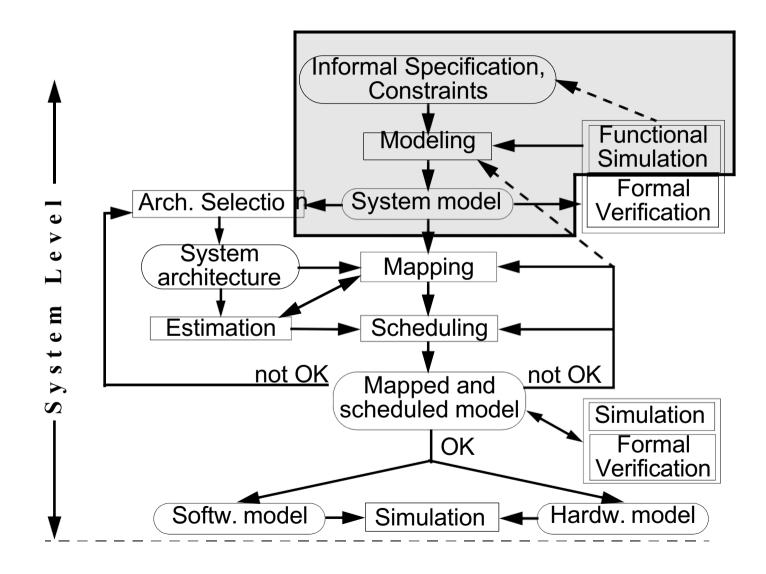
Formal verification


It is impossible to do an exhaustive verification by simulation!
 Especially for safety critical systems formal verification is needed.

Hardware/Software codesign

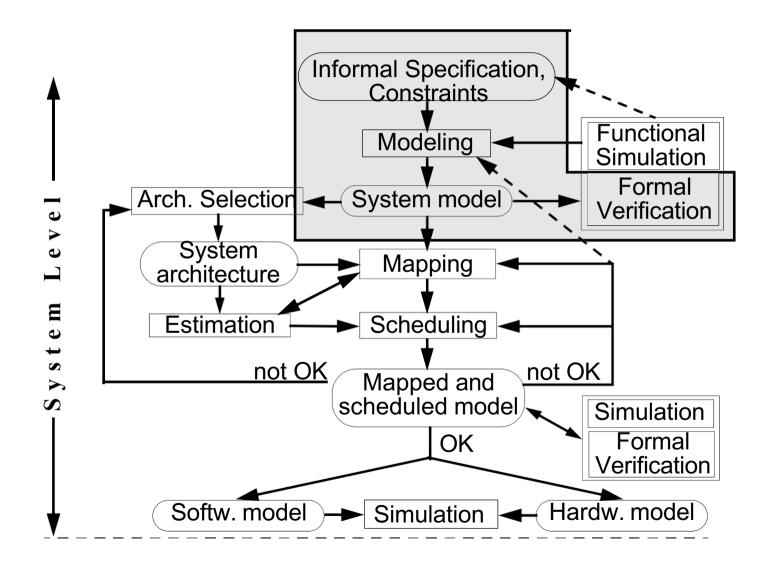
- During the mapping/scheduling step we also decide what is going to be executed on a programmable processor (software) and what is going into hardware (ASIC, FPGA).
- During the implementation phase, hardware and software components have to be developed in a coordinated way, keeping care of their consistency (hardware/software cosimulation)

System Level Design Flow

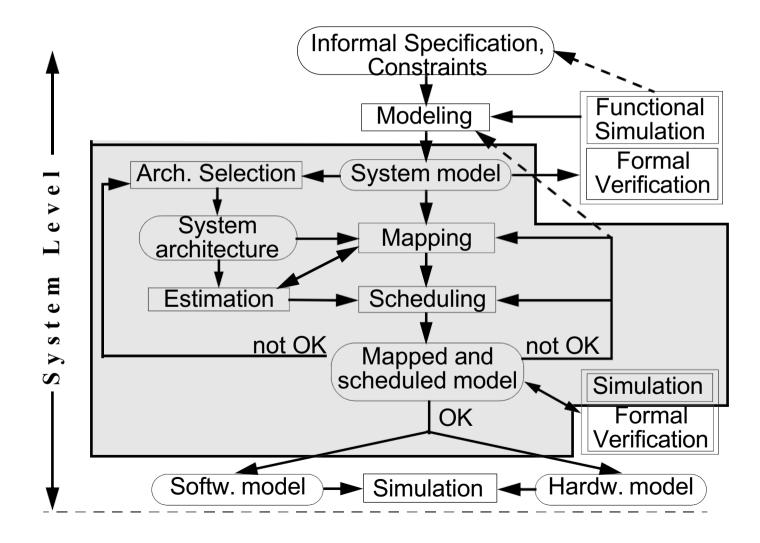

This is what we are interested in, in this course!

Course Topics at a Glance

- Introduction: Embedded Systems and Their Design (just finished!)
- Models of Computation and Specification Languages
 - Dataflow Models, Petri Nets, Discrete Event Models, Synchronous Finite State Machines & Synchronous Languages, Globally Asynchronous Locally Synchronous Systems, Timed Automata, Hybrid Automata.
- Architectures and Platforms for Embedded Systems Design
 - General Purpose vs. Application Specific Architectures, Component and Platform-based Design, Reconfigurable Systems, Functionality Mapping.
- Real-Time Embedded Systems
- System-Level Power/Energy Optimization


Lab Assignment 1

Modeling and simulation with System C


Lab Assignment 2

Formal verification with UPPAAL (TDTS07 only)

Lab Assignment 3

Design space exploration with an MPARM simulator.

